
94-775 Unstructured Data Analytics

Slides by George H. Chen

Last lecture: More on transformers; a few more
deep learning concepts; course wrap-up

HW2 Questionnaire (1/2)

Overall: looks good!
(HW is designed to take at most 15 hrs)

HW2 Questionnaire (2/2)
• Some students said that interpreting clusters or topics can be hard

• Interpreting clusters or topics can indeed be challenging!

• Even with newer topic models developed (such as BERTopic),
interpretation can still be challenging depending on the dataset

• Some students said that t-SNE plots are confusing to interpret

• Yes, this is indeed the case…

• Some students said that it's not clear when specific steps should be
done in preprocessing (e.g., when should PCA be applied before
clustering? when should it not be applied? etc)

• If you have some ground truth annotation that can be used to help
color the data points, it might be easier seeing what's going on…

• This is indeed not straightforward

• Perhaps the best starting point: see if someone else has come up
with a preprocessing pipeline for a similar sort of data as yours
• If not, try multiple options and see how conclusions change!

Outline

• How can BERT or similar models help us solve a prediction task?

We'll specifically look at sentiment analysis with IMDb reviews

• How do we train deep nets on small datasets?

• How do we interpret what a deep net has learned?

• What is BERT?

• A bit more on transformers

• How does training a deep net work?

• Course wrap-up

A bit more on transformers

(Flashback) Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

Try to predict 'h'

Try to predict 'e'

Try to predict ' '

Try to predict 'o'

Try to predict 'p'

Try to predict 'i'
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er
C

la
ss

ifi
er

C
la

ss
ifi

er

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

(Flashback) Generative Pre-trained Transformer (GPT)

44

60

57

1

67

68

'T'

'h'

'e'

' '

'o'

'p'

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

D
ec

o
d

er
-o

nl
y

Tr
an

sf
o

rm
er

44

0Position:

Token:

60

1Position:

Token:

57

2Position:

Token:

67

4Position:

Token:

1

3Position:

Token:

68

5Position:

Token:

The output before the classifier could
be thought of as a token embedding

that accounts for context

If we tokenized instead using words,
then we would have word embeddings

The BERT model is basically what we
showed today except without the causal
constraint & with a different tokenizer

(As we saw previously, BERT's
tokenization uses words and

sometimes subwords)

causal dependence

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

BERT (2018)

no causal dependence

The prediction at any time
step depends on the
input at all time steps

A transformer layer like
this without a causal

constraint is sometimes
called an "encoder-only"

transformer layer

This lack of causal
dependence is also

sometimes referred to as
"bidirectional"

BERT is short for
Bidirectional Encoder
Representations from

Transformers

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

BERT (2018)

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.

[CLS]

this

movie

rocks

[SEP]

BERT actually adds an initial "[CLS]"
token and an ending "[SEP]" token

The word embedding for [CLS] is
meant to summarize the doc

C
la

ss
ifi

er

linear layer (2 output nodes),
softmax activation

label 0: negative sentiment
label 1: positive sentiment

BERT (2018)

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.
To

ke
n/

Po
s.

 E
.

To
ke

n/
Po

s.
 E

.

[CLS]

this

movie

rocks

[SEP]

BERT actually adds an initial "[CLS]"
token and an ending "[SEP]" token

The word embedding for [CLS] is
meant to summarize the doc

C
la

ss
ifi

er

linear layer (2 output nodes),
softmax activation

label 0: negative sentiment
label 1: positive sentiment

En
co

d
er

-o
nl

y
Tr

an
sf

o
rm

er

[CLS]

this

movie

rocks

[SEP]

The word embedding for [CLS] is
meant to summarize the doc

C
la

ss
ifi

er

linear layer (2 output nodes),
softmax activation

label 0: negative sentiment
label 1: positive sentiment

B
ER

T-
T

in
y

Sentiment Analysis with IMDb Reviews

We're about to look at a demo where we use a tiny version
of BERT called BERT-Tiny (so that things run faster!)

Sentiment Analysis Demo Cheatsheet

1. Load in training data (25000 IMDb reviews)

2. Do a 80/20 split of the training data into:
- proper training data (20000 reviews)
- validation data (5000 reviews)

3. Convert each proper training review into token IDs using
BERT-Tiny’s encode method

train_dataset

proper_train_dataset
val_dataset

list of length-2 tuples
each containing

(review, label 0 or 1)

"Master cinéaste Alain Resnais likes to work with those ..."

['[CLS]', 'master', 'ci', '##eas', '##te", 'alain', 'res',
'##nais', 'likes', 'to', 'work', 'with', 'those', ...]

[101, 3040, 25022, 26737, 2618, 15654, 24501, 28020, 7777,
 2000, 2147, 2007, 2216, ...]

Important: we do not build a vocabulary from
scratch since we just use BERT-Tiny's vocabulary!

proper_train_dataset_encoded list of length-2 tuples each containing
(encoded review, label 0 or 1)val_dataset_encoded

Sentiment Analysis Demo Cheatsheet

1. Load in training data (25000 IMDb reviews)

2. Do a 80/20 split of the training data into:
- proper training data (20000 reviews)
- validation data (5000 reviews)

3. Convert each proper training review into token IDs using
BERT-Tiny’s encode method

train_dataset

proper_train_dataset
val_dataset

list of length-2 tuples
each containing

(review, label 0 or 1)

"Master cinéaste Alain Resnais likes to work with those ..."

['[CLS]', 'master', 'ci', '##eas', '##te", 'alain', 'res',
'##nais', 'likes', 'to', 'work', 'with', 'those', ...]

[101, 3040, 25022, 26737, 2618, 15654, 24501, 28020, 7777,
 2000, 2147, 2007, 2216, ...]

Important: we do not build a vocabulary from
scratch since we just use BERT-Tiny's vocabulary!

Example: 5 data points (each one is a time series) of lengths 3, 2, 5, 1, 7

Time steps

Data point

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

4. Construct neural net (instead of nn.Sequential, we make a class
that inherits from nn.module)

PyTorch convention: the forward function specifies how a neural net
actually processes a batch of input data

The neural net we constructed has a
forward function with two inputs:
- a 2D table
 (each column is for 1 data point)
- a 1D table
 (specifies length for each time series)

proper_train_dataset_encoded list of length-2 tuples each containing
(encoded review, label 0 or 1)val_dataset_encoded

5. Train the neural net for some user-specified max number of epochs

6. Automatically tune on one hyperparameter:
choose # of epochs to be the one achieving highest validation accuracy

7. Load in the saved neural net from the best # of epochs

8. Finally load in test data, tokenize and convert each test review into
a list of token IDs, and use the trained neural net to predict

Time steps

Data point

Blue entries contain actual
values from the 5 time series

Gray entries contain
padded values (e.g., zeros)

The neural net we constructed has a
forward function with two inputs:
- a 2D table
 (each column is for 1 data point)
- a 1D table
 (specifies length for each time series)

Demo: Sentiment Analysis with IMDb Reviews

Demo

Fine-Tuning
Load in an already trained model, possibly change the last few layers,

and modify it for our purposes

We loaded in a pre-trained BERT-Tiny
model, which is a compressed version of
BERT-Large, trained on a large dataset
including BooksCorpus (800M words) +

English Wikipedia (2500M words)

We then fine-tuned BERT-Tiny for our
sentiment analysis neural net

Note that we fine-tuned on a relatively small
dataset (only 25000 training reviews, which is

much smaller than BooksCorpus/English
Wikipedia)

Sentiment analysis demo

[CLS]

this

movie

rocks

[SEP]

C
la

ss
ifi

er

linear layer (2 output nodes),
softmax activation

label 0: negative sentiment
label 1: positive sentiment

B
ER

T-
T

in
y

Handling Small Datasets
• Fine-tuning has an extremely important application: it allows us to

use an existing model trained on a massive dataset to help us with
a new prediction task where we might only have a small dataset

We just talked about this for the sentiment analysis demo (previous slide)

GPT pre-trained on massive dataset (exact size undisclosed…)

Fine-tune on human-annotated training dataset (of Q&A pairs and scores of
how good the system’s automatically generated Q&A pairs are), known to be

much smaller than what the model is pre-trained on

ChatGPT/GPT 4.0:

Handling Small Datasets
• Fine-tuning has an extremely important application: it allows us to

use an existing model trained on a massive dataset to help us with
a new prediction task where we might only have a small dataset

• Another extremely important strategy: data augmentation
(randomly perturb training data to get more training data)

Training label: cat

Training image Mirrored

Still a cat!

Rotated & translated

Still a cat!

State-of-the-art vision systems are all trained with data augmentation!

We just turned 1 training example in 3 training examples!

Allowable perturbations depend on data
(e.g., for handwritten digits, rotating a 6 or 9 by 180 degrees would be bad)

Interpreting/explaining deep nets

Visualizing What a CNN Learned
Plot filter outputs at different layers

Images: Francois Chollet’s “Deep Learning with Python” Chapter 5

Interpretability/Explainability: Current State of Affairs
• There are lots of “explanation” approaches that can be used after

training a deep net to try to understand what has been learned
• Many of these are implemented in the Python package Captum

developed by Meta/Facebook: https://captum.ai/

Crop image
(many CNNs need the input
image to be a specific size)

ResNet-18 (a CNN) predicts my
cat to be an “Egyptian cat” What pixels are important for prediction?

These are the answers from 3 different
explanation models (they give different answers!)

Warning: there’s a lot of debate as to how much we should actually
trust these explanations, as they can often be misleading

https://captum.ai/

Interpretability/Explainability: Current State of Affairs

There are neural net architectures that by design are interpretable
(e.g., prototypical part networks, neural topic models, neural decision
tree models…)

• No separate explanation approach needed since model directly
provides explanation

• My opinion: if you really care about interpretability/explainability,
then you’re better off using this sort of model

Unfortunately, deep nets with state-of-the-art prediction accuracy tend
to be difficult to interpret

It’s important to distinguish between tasks where interpretability is
important vs ones where it’s not as important

How to train a deep net

Training a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of
good parameter

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative

In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

Training a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Training a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Training a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Training a Deep Net

Victory!

Local minimum
Better

solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

In very high-dimensional parameter spaces, local minima can
be rare but we might get stuck in parts of the error landscape

where the slope downwards is very gradual/not steep

Popular optimizers
(e.g., Adam, RMSProp,
Lookahead) are variants

of gradient descent

Suppose the neural network has a single real number parameter w

w

Loss L

The optimizer is the skier!

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Gradient:
∂ 1

n

∑n
i=1 L(f2(f1(xi)), yi)

∂θ

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots of
gradients to help the

optimizer know where to go!

Computing gradients using
all the training data seems

really expensive!

& move optimizer

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

An epoch refers to 1 full pass through all
the training data

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

& move optimizer

Minibatch Gradient Descent

average loss

compute gradient
& move optimizer

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
& move optimizer

Batch size: how many
training examples we

consider at a time
(in this example: 2)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!)
if you choose # epochs/batch size poorly!!!

prediction

Exploratory data
analysis

write computer programs to assist analysis

Unstructured Data Analytics (UDA)

Data

The dead body

Some times you
have to collect
more evidence!

Finding Structure InsightsQuestion

When? Where?
Why? How?
Perpetrator
catchable?

Puzzle solving,
careful analysis

The evidence

This is provided
by a domain

expert

Exploratory data
analysis

Answer original
question

Sometimes: we aim to solve a prediction problem

UDA involves lots of data ➔ write computer programs to assist analysis

Much like how many murder mysteries go unsolved,
many data analysis (unstructured or not) problems can be extremely difficult

Not detailed in lecture but addressed by your final project,
which must address a public policy problem

Becoming good at data scientist requires you to think like a detective!

Some Parting Thoughts

Just earlier this month (Apr 2), Google released its AI safety plan

• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices/hyperparameters

• Come up with quantitative metrics that make sense for your
problem, and use these metrics to evaluate models (think about
how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:

• Manually obtain labels (either you do it or crowdsource)

• Set up “self-supervised” learning task

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in the
context of your original problem!

• There is a lot we did not cover — keep learning!

• There are lots of open policy questions regarding AI safety

https://deepmind.google/discover/blog/taking-a-responsible-path-to-agi/

